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Abstract. We study the spin-dependent transport properties of the nanostructures consisting of realistic
magnetic barriers produced by the deposition of ferromagnetic stripes on heterostructures. It is shown
that, only in the nanostructures with symmetric magnetic field with respect to the magnetic-modulation
direction, electrons exhibit a considerable spin-polarization. It is also shown that the degree of the electron
spin polarization is greatly dependent on the ferromagnetic stripe and its position relative to the 2DEG.
A much larger electron-spin polarization can be obtained by properly fabricating the ferromagnetic stripe
and by adjusting its distance above the 2DEG.

PACS. 73.40.Gk Tunneling – 72.10.-d Theory of electronic transport; scattering mechanisms –
73.23.-b Electronic transport in mesoscopic systems – 75.70.Cn Interfacial magnetic properties (multilayers,
superlattices)

Nomenclature

2DEG two-dimensional electron gas
q wave vector in y direction
σ electron spin
µB Bohr magneton
m∗ effective mass of electron
g∗ effective Landè factor of electron
B magnetic field
M0 magnetisation of the stripe
h height of the strip
d thickness of the stripe
z0 distance of the stripe to 2DEG
x, y, z coordinates
A(x) magnetic vector potential
Vσ(x, q) effective potential of structure
lB magnetic length
ωc cyclotron frequency
E electronic energy
x−(x+) left (right) end of magnetic barrier
Tσ(E, q) transmission coefficient
PT (E, q) electron-spin polarization
EF Femi energy
Gσ(EF) ballistic conductance
PG(EF) spin-conductance polarization
νF Femi velocity
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In the recent years, spin-polarized transport in nanos-
tructures has attracted considerable attention due to its
importance in both basic research and practical applica-
tion [1–6]. The increasing interest in this topic stems from
two major factors. The first one is that advances in semi-
conductor microfabrications have made it feasible to pro-
duce structures which possess electrical properties greatly
sensitive to electron spin. So-called “spintronics” devices
can be controlled by the electron spin polarization. The
second factor is that one can exploit a quite general phys-
ical approach to clarify unusual spin-dependent phenom-
ena in low-dimensional structures.

Magnetic-barrier nanostructures are relevant to the
new class of semiconductor quantum structures, which can
are experimentally realized by the deposition of a two-
dimensional electron gas (2DEG) in an inhomogeneous
magnetic field [7]. There have been numerous studies,
both experimental and theoretical, devoted to the trans-
port properties of magnetic-barrier nanostructures [7–12].
However, in these studies the interaction of the elec-
tronic spin with the magnetic-barrier field has been over-
looked. Recently, a few articles have called attention
to some peculiarities in the dependence of the tunnel-
ing probability and the conductance on the electronic
spin [13–15]. Using a simple δ-function magnetic-barrier,
effects of intrinsic spin on electronic transport proper-
ties were first investigated by Majumdar [13]. It was
found that the interaction of the intrinsic spin of 2DEG
with the magnetic field significantly changes the tunneling
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probability and the conductance of electrons through mag-
netic barriers. Subsequently, the spin- and wave-vector
dependent resonant tunneling of electrons through rect-
angular and sawtooth magnetic-barriers have also been
studied [14]. Very recently, the spin-dependent electron
tunneling through rectangular magnetic-barriers has been
investigated with and without an external electric field
in reference [15]. It was found that only in the asymmet-
ric rectangular magnetic barriers electrons exhibit a con-
siderable spin-polarization, and that the external electric
field can greatly change the spin polarization of electrons.
However, all the magnetic barriers used in these studies
are not the realistic ones. For the realistic magnetic bar-
rier structures, electronic transport properties have been
studied by our group headed by Lide Zhang [8], but we did
not consider still the effect of electron-spin. Therefore, in
order to reveal the spin-dependent transport properties of
realistic magnetic nanostructures, in this paper we study
the realistic magnetic barriers instead of the ideal ones.
The general rule of the spin polarization for electron tun-
neling through the realistic magnetic barriers is found. We
also discuss the effect of parameters of the system on the
magnitude of the electron-spin polarization.

As an illustrative example, we consider two types of
realistic magnetic barriers, which is produced by the de-
position, on the surface of a heterostructure, of a ferro-
magnetic stripe with magnetization (a) perpendicular and
(b) parallel to the 2DEG located at a distance z0 below
the stripe (see the schematic illustration of the system on
the top of Fig. 1). For these two structures, the magnetic
barriers experienced by the 2DEG are given by [7]

B = B(x)ẑ
B(x) = (M0h) [f(x+ d/2)− f(x− d/2)] , (1)

where (a) f(x)=2x/(x2+z2
0), and (b) f(x)=−z0/(x2+z2

0).
M0, d, and h are the magnetization, thickness, and height
of the ferromagnetic stripe. The two magnetic barriers
are shown in Figures 1a and b, respectively, where the
structural parameters are both chosen to be M0h = 1.0,
d = 1.0, and z0 = 0.1; the left and right ends of magnetic
barriers are located at x− = −1.5 and x+ = +1.5.

The Hamiltonian for the 2DEG system assumed in
the xy plane with the consideration of the electron spin
can be written as

H =
1

2m∗
[P + eA(x)]2 +

1
2
σµBg

∗B(x), (2)

where µB = e~/2m∗ is the Bohr magneton, m∗ is
the effective mass of electron, P is the momentum of
the electron, g∗ is the effective Landé factor of the
electron in a real 2DEG realized using semiconduc-
tor, σ = +1/−1 for the up/down spin directions, and
A(x) = [0, A(x), 0] is the magnetic vector potential given,
in Landau gauge, by A(x) = (M0h) ln

[
(x+d/2)2+z2

0
(x−d/2)2+z2

0

]
,

and A(x) = (M0h)
[
tan−1

(
x−d/2
z0

)
− tan−1

(
x+d/2
z0

)]
for

magnetic barriers (a) and (b), respectively. It is con-
venient to express quantities in dimensionless units by

Fig. 1. Magnetic barriers and the corresponding vector poten-
tials, where schematic illustration of the system is placed on
the top and the structural parameters are chosen to M0h = 1.0,
d = 1.0, and z0 = 0.1. The left and right ends of the barriers
are located at x− = −1.5 and x+ = 1.5, respectively.

using the cyclotron frequency ωc = eB0/m
∗ and the

magnetic length lB =
√
~/eB0. For GaAS, g∗ = 0.44,

m∗ = 0.067me with me being the free-electron mass, and
an estimated B0 = 0.1 T, we obtain lB = 813 Å and
~ωc = 0.17 meV. The relevant quantities can be expressed
in dimensionless units: (1) the coordinate x→ lBx, (2) the
magnetic field B(x) → B0B(x), (3) the vector potential
A(x)→ B0lBA(x), and (4) the energy E → ~ωcE.

The two-dimensional Schrödinger equation
HΨ(x, y) = EΨ(x, y) with H given by equation (2)
in the dimensionless units has solutions of the form
Ψ(x, y) = eiqyψ(x), where E is the total energy of the
electron and q is the electron wave vector in the y
direction. The wave function ψ(x) satisfies the following
1D Schrödinger equation{

d2

dx2
− [A(x) + q]2 + g∗σB(x)/2

}
ψ(x) = 2Eψ(x), (3)

where Vσ(x, q) = [A(x) + q]2 + g∗σB(x)/2 is the ef-
fective potential of the corresponding structure, which
depends clearly upon the magnetic configuration B(x),
the y-directed wave vector q, and the electron spin
σ. For a MB structure with a complex effective po-
tential Vσ(x, q) within the region [x−, x+], it is diffi-
cult to directly solve equation (3). Here we follow the
spirit of the well-established method in reference [8]. For
that we divide the region into N(�1) segments, each
of which has width a = (x+ − x−)/N , and treat the
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effective potential as a constant Vσ = [x− + (j − 1)a, q]
in the jth segment [x− + (j − 1)a, x− + ja]. Within this
segment, the Schrödinger equation (3) then becomes{

d2

dx2 − Vσ [x− + (j − 1)a, q] + 2E
}
ψ(x) = 0, which has

the plane-wave solution, ψj(x) = cjeikjx+dje−ikjx, where
kj = {2E − Vσ [x− + (j − 1)a, q]}1/2. Without any loss of
generality, in both incident and outgoing regions of the
magnetic barrier, the wave functions can be assumed as
ψ(x) = eikx + re−ikx, x < x−, and teikx, x > x+, respec-
tively, where k =

√
2E − q2, r is the reflection amplitude,

and t is transmission amplitude. From the wave-function-
matching conditions at the boundaries of the segments
and at x = x−, x+, we obtain(

eikx− e−ikx−

ikeikx− −ike−ikx−

)(
1
r

)
=

M

(
eikx+ e−ikx+

ikeikx+ −ike−ikx+

)(
t
0

)
(4)

where

M =
(
M11 M12

M21 M22

)
=

N∏
j=1

Mj

and

Mj =
(

cos(kja) − sin(kja)/kj
kj sin(kja) cos(kja)

)
are the transfer matrix and the jth transfer matrix
for the jth segment, respectively. Therefore, the spin-
dependent transmission coefficient for electron tunneling
through the MB nanostructure within the region [x−, x+]
can be easily obtained from the transfer matrix M

Tσ(E, q) = 4
∣∣∣∣(M11 +M22) + i

(
kM12 −

M21

k

)∣∣∣∣−2

· (5)

To evaluate the electron spin-polarization effect in the tun-
neling process, one usually calculates the spin polariza-
tion of the transmitted beam defined in terms of the spin-
dependent transmission coefficient Tσ(E, q) and given by

PT (E, q) =
T+(E, q)− T−(E, q)
T+(E, q) + T−(E, q)

, (6)

where T+ and T− are transmission coefficients for spin-up
and spin-down electrons, respectively. Using the transmis-
sion coefficient Tσ(E, q), the spin-dependent conductance
of the electrons tunneling through the magnetic barrier
structures can be calculated in the ballistic regime as the
average electron flow over half the Fermi surface from the
well-known Landau-Büttiker formula and is given by [7]

Gσ(EF) = G0

∫ π/2

−π/2
Tσ

(
EF,

√
2EF sin θ

)
cos θ dθ, (7)

where EF is the Fermi energy and θ is the angle between
the direction of the incident electron and the x direction.
G0 = e2m∗νFLy/(2~2), where Ly is the length of the

structure in the y direction and νF is the Fermi veloc-
ity. Similar to the spin polarization PT , we also introduce
spin-conductance polarization PG of the magnetic nanos-
tructure defined by

PG(EF) =
G+(EF)−G−(EF)
G+(EF) +G−(EF)

, (8)

where G+ and G− correspond conductances of up- and
down- spin electrons, respectively.

Here, we would like to point out several points on our
theory depicted above. In the present work, we consider
ballistic transport of high mobility two-dimensional elec-
tron gases (2DEG) with mean free path not less than di-
mension of magnetic structure in tunneling direction in
low temperature. Our approximation method described
above is reliable, since it follows the spirit of numerical
method in reference [8], which is demonstrated to be ac-
curate enough (see Fig. 2 in Ref. [8]). In this paper, we
restrict our calculations to a single realistic magnetic bar-
rier, but our calculated method can also be applied to
more complicated multiple-barriers magnetic structures,
even magnetic superlattices, where the calculations will
be too time-consuming. In addition, the reality of the re-
alistic magnetic barriers means that the magnetic field is
obtained by directly integrating Maxwell’s equations for
the system (see Ref. [7]) and its magnetic profile is not
ideal such as rectangular or sawtooth.

First of all, to demonstrate the effect of electron spin
on the transmission, we have calculated transmission co-
efficients of T0 (without spin), T+ (up-spin), and T−
(down-spin) for electrons tunneling through realistic mag-
netic barriers. Figure 2 shows these transmission coeffi-
cients as functions of the energy E and the wave vector q
for the magnetic barrier as shown in Figure 1a, where
the structural parameters are chosen to be M0h = 1.0,
d = 1.0, and z0 = 0.1. It is evident that both T+ and
T− differ from T0, especially in low energy region, i.e.,
the interaction of the electron spin with the magnetic
field significantly changes the tunneling probability of elec-
trons through magnetic barriers. This is a consequence
of the variation of the effective potential Vσ(x, q) due to
the interaction of the electronic spin with the magnetic
field. Also, one can clearly see that the transmission coef-
ficient T+ of up-spin electrons is greatly different from
the transmission coefficient T− of down-spin electrons.
Curve T+ shifts toward high-energy region, while T− does
toward the opposite direction, and thus spin splitting of
transmission probability or the dependence of transmis-
sion probability on the electron spin directions appears.
This occurs because for this magnetic barrier the magnetic
field B(x) and the corresponding vector potential A(x) are
symmetric and antisymmetric with respect to x, respec-
tively. As a consequence of this, V+(x, q) ≡ [A(x) + q]2 +
g∗Bz(x)/2 6= V−(x, q) ≡ [A(x) + q]2 − g∗Bz(x)/2 accord-
ing to the well-known fact that the transmission coefficient
through a potential barrier is equal for particles moving
in opposite directions (i.e., the tunneling characteristics
are invariant with respect to the replacement x → −x in
the equation of motion), leads to the dependence of the
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Fig. 2. Transmission coefficients of T0 (without-spin), T+ (up-
spin), and T− (down-spin) for electrons tunneling through the
magnetic barrier presented in Figure 1a.

transmission coefficient on the spin directions. In addition,
it is interesting to note that the transmission coefficient
(T0, T+, or T−) is symmetric about the q = 0 plane also
for the same reason. As for the magnetic barrier shown
in Figure 1b, because its magnetic field B(x) is antisym-
metric and vector potential A(x) is symmetric relative to
the x, V+(x, q) = V−(x, q) leads to T+ = T−, i.e., in this
kind of magnetic barrier transmission coefficient of elec-
tron is independent of the spin direction [16]. Moreover,
the transmission coefficient (T0, T+, or T−) is antisym-
metric about the q = 0 plane, nevertheless T+, or T− is
still different from T0.

If there exists a difference of transmission coeffi-
cient between up-spin and down-spin electrons, namely,
T+ 6= T−, the electrons in the tunneling process will show
up spin polarization effect, i.e., PT 6= 0. Accordingly, for
the magnetic barrier shown in Figure 1a the electrons
should show up a rather evident spin polarization due to

h- wc( )

Fig. 3. The spin polarization for electron tunneling through
the magnetic barrier given in Figure 1a with structural param-
eters M0h = 1.0, d = 1.0, and z0 = 0.1.

the significant difference between up-spin and down-spin
transmissions (T+ and T−), while the magnetic barrier
shown in Figure 1b does not. In Figure 3 we present the
electron spin polarization PT through the magnetic bar-
rier of Figure 1a, as a function of the energy E and the
wave vector q, where the structural parameters are chosen
to be the same as in Figure 2. The considerable electron
spin-polarization is clearly seen. Moreover, the spin po-
larization is strongly dependent on electronic energy E.
For small electronic energy, the electron shows up very
strong spin polarization, while for large electronic energy,
the spin polarization is weakened, and finally approaches
zero. But the spin polarization is slightly associated with
the electron wave vector q in the y direction. Further-
more, from the definition of the electron spin polarization
(cf. Eq. (6)), one can easily find PT is symmetric about
the q = 0 plane since both transmission coefficients T+

and T− are symmetric with respect to the q = 0 plane. For
the magnetic barrier given in Figure 1b, the transmission
coefficient T+ = T− and therefore this type of magnetic
barrier structure does not show up spin polarization. So
far, we can conclude from the above results that for the
realistic magnetic barriers proposed by Matulis et al. [7],
only magnetic nanostructures with symmetric magnetic
fields about the x axis show up a considerable spin polar-
ization effect. And, the magnitude of the spin polarization
is dependent greatly upon the electronic energy E and
weakly upon the transverse wave vector q of the electron.

We then examine the electron spin effect on the con-
ductance through the magnetic barrier shown in Fig-
ure 1a. Figure 4 shows the results that the conductance
versus Fermi energy, where the parameters are the same
as in Figure 3, the conductance is normalized with respect
to G0, and the spin-conductance polarization PG is given
in the inset. Here, the solid, dashed, and dotted curves
correspond to without spin, up-spin, and down-spin elec-
trons, respectively. Despite the averaging of Tσ(E, q) over
half the Fermi surface, the main feature of the electron
transmission is still reflected in the conductance. From this
figure one can clearly see that spin-conductance (dashed
or dotted curve) and without-spin conductance (solid
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(h-wc)

(h-wc
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Fig. 4. Conductance through the magnetic-barrier structure presented in Figure 1a for the without-spin (solid curve), up-spin
(dashed curve), and down-spin (dotted curve), where the conductance is in units of G0. The corresponding spin-conductance
polarization is shown in the inset.

curve) are very different. Also, we can see that up-spin
conductance (dashed curve) is greatly different from that
of down-spin (dotted curve), where dashed curve shifts to-
ward high-energy end, while dotted curve does toward low-
energy direction. Because there is a significant difference
in the conductance between up- and down-spin electrons
(i.e., the conductance depends strongly on the direction
of the electron spin), the magnetic barrier structure ex-
hibits an evident spin-conductance polarization effect as
depicted in the inset of Figure 4, especially in low Fermi
energy. For large Fermi energy, the spin-conductance po-
larization PG is weakened, and finally approaches zero.
Two sharp peaks in PG curve in low-energy region corre-
spond to two low-energy resonant peaks of spin conduc-
tance curves (G+ and G−), respectively. These features
are similar to those of the spin polarization PT as given
in Figure 3.

Finally, we study the effect of the ferromagnetic stripe
and its position relative to the 2DEG on the electron spin
polarization for the magnetic barrier shown in Figure 1a.
Figures 5a–c show the spin polarization PT as a function
of the energy E and the wave vector q, for the differ-
ent structural parameters of ferromagnetic stripe and z0:
(a) M0h = 1.0, d = 1.0, and z0 = 0.3; (b) M0h = 1.5,
d = 1.0 and z0 = 0.1; and (c) M0h = 1.0, d = 1.5, and
z0 = 0.1, respectively. In contrast to the Figure 3 that
is for the structural parameters of M0h = 1.0, d = 1.0,
and z = 0.1, it is apparent from these figures that the fer-
romagnetic stripe and the distance z0 strongly influence
the magnitude of the spin polarization. The spin polar-
ization PT is weakened with the z0 increasing and occurs
in much less electronic energy range approaching low en-
ergy region. When the M0h increases, PT is enhanced and
is extended. The spin polarization PT is enhanced, and
exhibits more and sharper peaks, with the d increasing.

h-wc( )

h-wc( )

h-wc( )

Fig. 5. The electron spin polarization for the magnetic barrier
presented in Figure 1a with the different structural parameters
(a) M0h = 1.0, d = 1.0, z0 = 0.3, (b) M0h = 1.5, d = 1.0,
z0 = 0.1, and (c) M0h = 1.0, d = 1.5, z0 = 0.1, respectively.
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(h-wc)

Fig. 6. The spin-conductance polarization for the magnetic
barrier presented in Figure 1a, where the solid, dashed,
and dotted curves correspond to the structural parameters
(M0h = 1.0, d = 1.0, z0 = 0.3), (M0h = 1.5, d = 1.0, z0 = 0.1),
and (M0h = 1.0, d = 1.5, z0 = 0.1), respectively.

Similar features are also reflected in spin-conductance po-
larization PG as given in Figure 6, where the solid, dashed,
and dotted curves correspond to the cases (a), (b) and (c)
in Figure 5, respectively. All these features of the ferro-
magnetic stripe and z0 effect on the electron spin polar-
ization (PT and PG) are due to the change of the effective
potential Vσ(x, q) via the magnetic field B(x) when the
parameters of the system are altered. These features also
hint that a much larger spin polarization or much better
spin-filtering properties for magnetic barriers can be ob-
tained by both using the proper ferromagnetic stripe and
adjusting the distance z0, which may be useful for fabri-
cation of spin devices based on such magnetic barriers.

In conclusion, we have studied electronic spin-
dependent transport in the realistic magnetic-barrier
nanostructure proposed by Matulis et al. [7], which can
be experimentally realized by the deposition of ferromag-
netic stripes on heterostructures. We have shown that, for
the structures with symmetric magnetic field about the x
axis (magnetic modulation direction), the transmission of
2DEG depends greatly on the spin direction. Thus, this
type of realistic magnetic barrier is found to possess a
considerable spin polarization effect, which is dependent
strongly upon the incident electron energy, and poorly
upon the incident electron wave vector. We have also
exhibited that the magnitude of this electron spin po-
larization is greatly influenced by the ferromagnetic stripe

and its distance to 2DEG. Therefore, a much larger spin
polarization can be obtained by properly fabricating the
ferromagnetic stripes and by adjusting their locations rel-
ative to the 2DEG.
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